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ABSTRACT

Due to its long record length (approximately 25 years), the outgoing longwave radiation (OLR) dataset has
been used in a multitude of climatological studies including studies on tropical circulation and convection, the
El Niño–Southern Oscillation (ENSO) phenomenon, and the earth’s radiation budget. Although many of the
climatological studies using OLR have proven invaluable, proper interpretation of the low-frequency components
of the data could be limited by the presence of biases introduced by changes in the satellite equatorial crossing
time (ECT). Since long-term global changes could be masked or contaminated by this instrumental bias, it is
necessary to take steps to ensure that the daily, global OLR dataset is free from such biases and is as accurate
as possible.

The goal of this study is to derive a method for estimating the ECT biases in the daily, global OLR dataset.
Our analysis utilizes a Procrustes targeted empirical orthogonal function rotation (REOF) on an interpolated
OLR dataset to try to isolate and remove the two major ECT biases—afternoon satellite orbital drift and the
abrupt transitions from a morning satellite to an afternoon satellite—from the dataset. Two targeted REOF
analyses are performed to separate and distinguish between these two artificial satellite bias modes. A ‘‘common
ECT’’ of approximately 0245 LST is established for the dataset by removing an estimate of these two ECT
biases.

Results from the analysis indicate that changes in ECTs can cause large regional biases over both ocean and
tropical landmasses. The afternoon satellite ECT drift-bias accounts for 0.4% of the pentad anomaly variance.
During a single satellite series (e.g., NOAA-11), the afternoon drift-bias can introduce a difference as large as
10.5 W m22 in the OLR values collected over most tropical landmasses. The morning to afternoon satellite
transition bias accounts for 0.9% of the pentad anomaly variance, and is shown to cause a bias of 12 W m 22

in the OLR values over most tropical landmasses during the NOAA-SR satellite series. The data are corrected
by removing a statistically derived synthetic eigenvector that is associated with each of the ECT bias modes.
This synthetic eigenvector is used instead of the exact values of the satellite bias eigenvector to ensure that only
the artificial variability is removed from the dataset.

The two REOF modes produced in this study are nearly orthogonal to each other having a correlation of only
0.17. This near orthogonality suggests that the use of the two-mode method presented in this study can more
adequately describe the individual nature of each of the two ECT biases than a single REOF mode examined
in previous studies. However, due to the presence of other forms of variability, it is likely that this study’s
estimate of the ECT bias includes ECT-related bias as well as some aspects of variability that may be associated
with sensor changes, intersatellite calibration and/or natural climate variability. The strengths and limitations of
the above technique are discussed, as are suggestions for future efforts.

1. Introduction

Satellite-observed outgoing longwave radiation
(OLR) datasets have proven to be useful in many climate
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studies including analyses on the El Niño–Southern Os-
cillation (ENSO) (e.g., Gill and Rasmusson 1983; Ras-
musson and Wallace 1983; Lau and Chan 1988), the
global energy budget (e.g., Gruber and Winston 1978;
Gruber and Krueger 1984; Kyle et al. 1985; Harrison
et al. 1988; Ramanathan et al. 1989), atmospheric cir-
culation and convection (e.g., Liebmann and Hartmann
1982; Gutzler and Wood 1990; Waliser et al. 1993),



2584 VOLUME 14J O U R N A L O F C L I M A T E

FIG. 1. Equatorial crossing times (ECTs) in terms of local standard time (LST) for satellites used in the construction
of the OLR dataset. These ECTs shown are for the morning hours. Note that for each satellite, there is also an afternoon
or evening crossing time with the same hour.

intraseasonal variability (e.g., Murakami et al. 1979;
Lau and Chan 1988; Hendon and Salby 1994; Jones et
al. 1998; Waliser et al. 1999) and precipitation in the
Tropics (e.g., Morrissey 1986; Yoo and Carton 1988;
Xie and Arkin 1998). These studies, as well as numerous
others have been effective in describing the mean global
climate as well as many aspects of its variability, par-
ticularly shorter-term variability that has timescales of
a few years or less.

A number of useful OLR datasets exist to carry out
the above sorts of climate studies. These include global
data from the Nimbus Earth Radiation Budget (ERB)
Experiment (Kyle et al. 1985; Kyle et al. 1993), the
Earth Radiation Budget Experiment (ERBE) (Barkstrom
1984), the National Oceanic and Atmospheric Admin-
istration (NOAA) operational product (Gruber and
Krueger 1984; Gruber et al. 1994), as well as two more
recent additions, the Scanner for Radiation Budget
(ScaRab) (Kandel et al. 1998) and the Clouds and the
Earth’s Radiant Energy System mission (CERES) (Wie-
licki et al. 1996). In addition to the above mission-
oriented and operational products there are a number of
experimental products, such as those derived from the
High-Resolution Infrared Sounder (HIRS) (Ellingson et
al. 1989; 1994) and the Television Infrared Observation
Satellite (TIROS) Operational Vertical Sounder (TOVS)
(e.g., Susskind et al. 1997) on polar-orbiting platforms,
as well as others derived from sensors on geostationary
satellites (e.g., Minnis and Harrison 1984; Minnis et al.
1991).

Each of the OLR products listed above has its own
strengths and weaknesses in regard to accuracy, spatio-
temporal sampling, and associated objectives. For ex-
ample, the ERBE, CERES, and ScaRab missions are
particularly attractive for detailed radiation budget stud-
ies due to their sampling characteristics (e.g., global,
precessing orbits) and/or instrument designs (e.g.,
broadband). However, these missions are not as useful
for studying low-frequency variability due to their rel-

atively short records (i.e., months to a few years) or for
examining day-to-day variations in diurnal variability
since they are based on polar-orbiting platforms. Geo-
stationary-derived OLR data are very well suited for
examining the details of diurnal variability due to their
frequent temporal sampling. However, their accuracy is
relatively low since the broadband fluxes need to be
derived from narrowband radiances, which introduces
a number of uncertainties and biases (e.g., Minnis et al.
1991; Gruber et al. 1994). Moreover, each geostationary
satellite only samples a particular region of the earth
and global coverage is impossible. Given that the op-
erational NOAA OLR dataset is based on (nonprecess-
ing) polar-orbiting platforms and narrowband obser-
vations, it is also not well suited for detailed radiation
budget studies or examination of the details of the di-
urnal cycle. On the other hand, it does provide global
coverage and a multidecade record. These features make
it one of the few sources of satellite data that can be
used for studies of low-frequency climate variability,
such as variability among ENSO events, decadal vari-
ations, or trends. In fact, due to its long record length
and continued production (since June 1974), the NOAA
OLR dataset tends to be the most widely used of the
OLR datasets for diagnostic studies of climate and at-
mospheric circulation variability.

A drawback of the NOAA OLR record for studying
low-frequency variability is that it is composed of data
from 12 different satellites, each with its own unique
characteristics, such as sensor channels, satellite equa-
torial crossing time (ECT), and orbital drift rate (Fig.
1). These changes in sampling characteristics can lead
to contamination of the natural long-term trends and
low-frequency variability in the dataset. Given the po-
tential for signal contamination in the dataset, along with
the dataset’s extended use by the climate community, it
is important to identify, and possibly even correct, any
sampling biases in the NOAA OLR dataset to ensure it
is as accurate as possible. As Fig. 1 emphasizes, the
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ECTs of the satellites that make up the NOAA OLR
dataset have changed considerably over the course of
the record, implying differences in the manner the di-
urnal cycle is sampled. Since the diurnal cycle of OLR
is generally not symmetric between night and day, the
resulting ‘‘daily’’ average obtained from two samples
separated by 12 h can become biased relative to the true
diurnal average (Vonder Haar and Suomi 1971).

An estimate of the size of the ECT bias in OLR for
a 0300/1500 LST satellite ECT can be obtained by com-
paring time-mean ERBE values of OLR from a ‘‘long’’
overlapping period of the synchronous NOAA-9 and pre-
cessing ERBS polar orbiting satellites. Such a compar-
ison shows mean differences ranging between about 63
W m22 (see section 4c for more details). The sensitivity
of the satellite ECT bias versus ECT was estimated by
Waliser and Zhou (1997, Fig. 5; cf., Young et al. 1998)
for the Sahara region by comparing two-sample means
to the mean of an hourly resolved diurnal cycle esti-
mated by Kondragunta and Gruber (1995) using three
ERBE satellites. For the Sahara, the two-sample mean
can be biased from the ‘‘true’’ 24-h mean anywhere from
about 14 to 28 W m22 depending on the satellite’s
ECT. The magnitude of these biases are of a sufficient
size to warrant caution in attributing long-term NOAA
OLR variations to natural climate variability (e.g., Nitta
and Yamada 1989; Morrissey and Graham 1996; Chu
and Wang 1997; Waliser and Zhou 1997) and motivates
a closer examination of these biases to determine if they
can be removed.

A great deal of effort has been expended to try to
understand and document the diurnal cycle of OLR.
These efforts typically involve the use of diurnally re-
solving sampling platforms such as geostationary or pre-
cessing polar-orbiting (e.g., ERBS) satellites, often in
conjunction with models of the diurnal variation of ra-
diation (e.g., Saunders et al. 1983; Duvel and Kandel
1985; Brooks et al. 1984; 1986; Harrison et al. 1988;
Hartmann et al. 1991; Rieland and Raschke 1991;
Thomas et al. 1995; Hucek et al. 1996; Young et al.
1998). However, little effort has been directed toward
describing and correcting the biases in the NOAA OLR
dataset in spite of its wide use by the climate com-
munity. Adjustments made by Gruber and Krueger
(1984) specifically address the biases resulting from
changes in instruments and sensor channels (i.e., the
narrowband-to-broadband conversion). These correc-
tions were derived from data collected by the NOAA-
SR series, TIROS-N, NOAA-6, and NOAA-7. They were
applied to the entire archived record at the time (1974–
84) to render that record as homogenous as possible.
Similar adjustments have been incorporated into the nar-
rowband-to-broadband scheme used for the post-1984
data. It should be noted, however, that these adjustments
are not likely to fully account for the regional biases
that can be introduced into the data due to the diurnal
sensitivity of the narrow-to-broadband conversion (e.g.,
Minnis et al. 1991; Ellingson et al. 1989; 1994). Fur-

thermore, they do not attempt to correct for the changes
in the ECT of the satellites used to construct the NOAA
OLR dataset.

In regard to the ECT bias in the NOAA OLR dataset,
Gadgil et al. (1992) proposed a method that can correct
the systematic bias from one satellite (i.e., NOAA-7) to
another (i.e., NOAA-SR) by using a simple quadratic
relationship. Although this correction is useful for com-
paring short-term variability, it cannot address the mul-
tiple changes in ECT that occur in the current long-term
record. A more recent ECT bias correction for the
NOAA OLR dataset was explored by Waliser and Zhou
(1997). Using a tropical subset (308N–308S) of monthly
OLR data they show that transitions between satellites
with different ECTs introduce abrupt changes as high
as 16 W m22. Eigen analyses, like the rotated empirical
orthogonal function (REOF) analyses performed by
Waliser and Zhou (1997), as well as Chelliah and Arkin
(1992) before them, are used to isolate artificial spatial
loading patterns that are described as ‘‘satellite modes.’’
These modes are known to exhibit a strong loading over
land and a weaker loading of the opposite sign over the
ocean. They are believed to be an artifact of sampling
because the time-dependent amplitudes associated with
these modes fluctuate with the changes in the satellite
ECTs. Waliser and Zhou used their REOF analysis tech-
nique to remove an estimate of the ECT bias from a
tropical monthly subset of the OLR dataset.

Based on the encouraging results from the Waliser
and Zhou (1997) study, this study was undertaken to
explore extensions and refinements of their technique
for use on global, daily OLR. In particular, it is designed
to focus on, and discriminate between, the two dominant
satellite biases associated with changes in ECT—sat-
ellite orbital drift and abrupt transitions between after-
noon and morning satellites. A central element of this
extension is the use of Procrustes targeted REOF anal-
ysis (Richman and Easterling 1988) to separately isolate
and describe each of these biases in the OLR dataset.
The EOF analysis is done in the time domain such that
it can extract common patterns of variance in the time
series of each grid point (i.e., changes in the satellite
ECT). The methods in this study are developed to be
more robust and exacting than those of previous studies
like Gadgil et al. (1992) and Waliser and Zhou (1997).
Further, while earlier studies focused only on tropical
subsets of monthly OLR data, this analysis is applied
to the entire historical, daily, global OLR dataset. While
this particular effort is primarily empirical in nature,
parallel efforts are underway (Xie et al. 2000) to try to
take advantage of the sampling scheme and diurnal mod-
el from ERBE (Brooks et al. 1986). At the conclusion
of those efforts, the relative merits of each approach
will be assessed to determine which, if either, approach,
or a combination, might be feasible for operationally
correcting the ECT bias in the NOAA OLR dataset.

In the next section, a detailed description of the da-
taset and information on the satellites that were used to
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TABLE 1. Contributing satellites. A morning satellite is defined as a satellite that has a nominal ECT of approximately ‘‘sunrise’’ and
‘‘sunset’’ (0800 and 2000 LST). An afternoon satellite is defined as a satellite that has a nominal ECT of approximately ‘‘midday’’ and
‘‘midnight’’ (1430 and 0230 LST). Note that the SR series, NOAA-6, 210, and 212 are all morning satellites. Grids that are entirely missing
are listed within the satellite series.

Name
OLR data
start date

OLR data
finish date

Nominal ECT
(LST)

Number of
days

Sensor and
window
channel

NOAA-3 1 Jun 74 30 Jun 74 0850
morning

30 SR series
10.5–12.5 mm

NOAA-2 1 Jul 74 15 Oct 74 0830
morning

107

NOAA-3 16 Oct 74 16 Dec 74 0835
morning

62

NOAA-4 17 Dec 74 14 Sep 76 0840
morning

638

NOAA-5 15 Sep 76 16 Mar 78 0840
morning

548

Gap 17 Mar 78 31 Dec 78 — 290 GAP
TIROS-N 1 Jan 79 31 Jan 80 1530

afternoon
396 AVHRR

10.5–11.5 mm
NOAA-6 1 Feb 80 6 Sep 81 0730

morning
584 AVHRR

NOAA-7 7 Sep 81 4 Feb 85 1430
afternoon

1247 AVHRR/2
11.5–12.5mm

NOAA-9 5 Feb 85 7 Nov 88 1430
afternoon

1372 AVHRR/2

NOAA-10 8 Nov 88
1 Jul 90

30 Nov 88
4 Jul 90

0730
morning

23
4

AVHRR

5 Mar 91
13 Mar 91
14 Aug 91

1
1
1

NOAA-11 1 Dec 88 30 Jun 90 1430 577 AVHRR/2
5 Jul 90 4 Mar 91 afternoon 243
6 Mar 91 12 Mar 91 7

14 Mar 91 13 Aug 91 153
15 Aug 91 14 Oct 92 427
16 Oct 92 1 Feb 94 474
3 Feb 94 13 Sep 94 223

NOAA-12 15 Oct 92 0730 1 AVHRR/2
2 Feb 94 morning 1

14 Sep 94 31 Jan 95 140
29 Jun 95 1
17 May 96 18 May 96 2

NOAA-14 1 Feb 95 28 Jun 95 1430 148 AVHRR/2
30 Jun 95 16 May 96 afternoon 322
19 May 96 14 Mar 99 1024

Total Days: 9053

collect the NOAA OLR is provided. Section 3 presents
the methodology used in this study. Section 4 discusses
the interpolation of the dataset, and the isolation of the
two major ECT biases—satellite drift and abrupt tran-
sitions—from the dataset. Section 5 provides a brief
summary of the results and discusses the strengths and
limitations of this approach. The appendix describes the
method for determining the number of statistically sig-
nificant EOF modes to include in the rotation.

2. Data description

The OLR dataset used for this project is the 2.58 3
2.58 gridded twice-daily satellite dataset produced by
the National Centers for Environmental Prediction–
National Oceanic and Atmospheric Administration

(NCEP–NOAA). The dataset is 9053 days long, from
1 June 1974 to 14 March 1999. Within this period is a
nine-month (290 day) data gap from 17 March to 31
December 1978 due to the failure of the NOAA-5 sat-
ellite (Chelliah and Arkin 1992). There have been sev-
eral corrections applied to the dataset to account for the
changes in instruments and sensor channels, but none
that specifically address the changes in the ECT (Gruber
and Krueger 1984).

Table 1 shows detailed information about the 12 in-
dividual satellites that were used to produce the OLR
dataset. There have been many changes to the equipment
such as sensors and spectral window channels. The pe-
riod from 1 June 1974 to 17 March 1978 was collected
by the NOAA-SR series (NOAA-2–NOAA-5). The
NOAA-SR series used a scanning radiometer (SR) sen-
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sor with a window channel of 10.5–12.5 mm. TIROS-
N, and its replacements NOAA-6 and NOAA-10, used
the advanced very high resolution radiometer (AVHRR)
sensor whose window channel is more narrow (10.5–
11.5 mm) than the channel on the SR series. The current
satellite series, which includes NOAA-7, -9, -11, -12,
and -14, uses the AVHRR/2 sensor with a window chan-
nel of 11.5–12.5 mm (Gruber and Krueger 1984; NOAA
Polar Orbiter Data User’s Guide 1998).

Table 1 also presents the record of the individual sat-
ellites and the exact days they contributed to the OLR
dataset. Note that the record is dominated by afternoon
ECTs (see Fig. 1) and that after 1988, the morning sat-
ellites NOAA-10 and NOAA-12 were commonly used as
replacement satellites to fill in single-day gaps. Table 1
also shows the collection time for the satellite, either
morning or afternoon. A morning satellite, for the pur-
pose of this paper, will be defined as a satellite that has
a nominal ECT of approximately ‘‘sunrise’’ and ‘‘sun-
set’’ (e.g., approximately 0800 and 2000). The SR se-
ries, NOAA-6, -10, and -12 are all examples of morning
satellites. An afternoon satellite will be defined as a
satellite that has a nominal ECT of approximately ‘‘mid-
day’’ and ‘‘midnight’’ (e.g., approximately 1430 and
0230). TIROS-N, NOAA-7, -9, -11, and -14 are afternoon
satellites.

Each satellite continuously records information as it
orbits the earth from pole to pole, regardless of whether
it has a morning or afternoon ECT. The portion of the
satellite pass that is collected from the sun side of the
earth is designated a daytime pass. The portion on the
dark side of the earth is designated a nighttime pass.
Each satellite therefore produces a collection of daytime
(nighttime) passes for any given day (night) that are
mapped to a rectangular grid and used to form a global
composite. This twice-daily data is provided from
NCEP–NOAA in the form of a daytime series of grids
and a nighttime series of grids for each satellite.

In recent years, the addition of a concurrent pair of
morning and afternoon satellites has allowed the pos-
sibility to use four daily samples in the production of
the OLR dataset. Using multiple satellite samples would
result in reducing the ECT bias effect although, it would
not strictly remove it. NCEP–NOAA has resisted using
this approach because the introduction of a four-sample
mean could disrupt the long-term homogeneity of the
OLR record. Currently, the archived record is predom-
inately composed of data collected by afternoon satel-
lites, and therefore, the afternoon ECT is the preferred
ECT for data collection.

Figure 2 shows a typical 5-day series of the OLR
daytime and nighttime grids. These days are taken from
16 May to 20 May 1975 by the NOAA-4 satellite. They
exhibit typical missing data patterns, such as the entire
swath missing in Eastern Pacific and Africa for the day
16 May, and the poor coverage of the Arctic region.
Figure 3 is a composite of the percent missing data over
the record (shown as before and after the nine-month

gap). For the period of 1974–78, the highest values of
missing data (45%) occur over the northern most part
of North America. This is characteristic of the entire
swath persistently missing, a feature that is apparent in
Fig. 2. The highest values of missing data (;45%) for
the period of 1979–99 come from the regions poleward
of 858N for the daytime series of grids and 858S for the
nighttime series of grids. These missing values are com-
posed of multiple occurrences of gaps that are 60 or
more days long.

For this investigation of the ECT biases, we derived
the OLR annual cycle solely from the portion of the
record sampled by the afternoon satellites. Consistent
with NOAA’s use of the afternoon ECT as the preferred
ECT for data collection, this method establishes the af-
ternoon satellites as the primary ECT for the entire re-
cord. Area-weighted daily anomalies used in this study
are calculated for the entire dataset with respect to the
above-mentioned annual cycle. The area-weighting
scheme is based on the square root of a latitudinally
dependant sine function [i.e., sin(latitude)1/2] and is ap-
plied to each global grid point. Area-weighting of the
anomalies in this manner compensates for the extra var-
iance that is introduced by the use of a rectangular global
grid where the pole has the same number longitudinal
of samples (144; 1 per 2.58 of longitude) as the equator.
In order to keep the computational resources of the EOF
analysis within practical limits, the daily anomalies are
converted to pentad anomalies. This has little effect on
the detection of the ECT biases due to the facts that
each of the biases are slowly varying and that the short-
est series of satellite data (NOAA-10) is longer than
several pentads. Once the biases are isolated, they will
be removed from the daily OLR dataset. In the following
sections, unless explicitly noted, OLR will refer to OLR
pentad anomalies.

3. Methodology

The goal of this study is to estimate the ECT biases
in the daily, global OLR dataset. Our approach involves
four principle steps:

1) filling the missing OLR grid values by interpolation
(see Figs. 2 and 3),

2) isolating the ECT drift bias associated with afternoon
satellites (see Fig. 1),

3) isolating the ECT bias associated with the transitions
between morning and afternoon satellites (see Fig.
1), and

4) subtracting the estimates of these two ECT biases
from the dataset.

a. Filling missing values

Using a modified version of the technique developed
by Liebmann and Smith (1996), a series of temporal
and spatial interpolations were conducted to fill the
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FIG. 2. Typical series of twice daily grids in the OLR dataset. This sequence shows the most
common patterns of missing values. These grids are taken from NOAA-4 on 16–20 May 1975.
The daytime (nighttime) ECT is approximately 0830 LST (2030 LST).

missing data in the daily NCEP–NOAA OLR dataset.
The 1997 release of the Liebmann and Smith daily OLR
dataset would have been used in this study except that
it was found to contain an undesirable feature, which
was traced to a programming error in one of their gap
filling routines. The error caused all temporal gaps lon-
ger than three days to be filled with the last known good
value. This affected approximately 2% of the entire da-
taset and caused many grid points to have a constant
value. We replaced this filling routine with a linear tem-
poral interpolation that interpolated between the two
good points on either side of the gap. This and the

addition of a temporal quality assurance test, were the
only modifications made to their technique. The results
of the quality assurance test and the gap-filling proce-
dure are presented in section 4. In each of the following
steps the daytime series of grids were handled separately
from the nighttime series of grids.

The aim of the interpolation scheme is to interpolate
over the smallest distance possible in either time or
space. This method of interpolation is superior to the
traditional spatial-only interpolation used by NCEP be-
cause for instances where an entire satellite swath (ap-
proximately 1500 km in width) is missing, the error
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FIG. 3. Percent of data that is missing. The top set of panels are for the period 1974–78 (before the 9-month gap). The bottom set of
panels are for the period of 1979–98. Similar to Liebmann and Smith’s (1996) Fig. 3.

resulting from interpolating over time at a given point
is typically much smaller than the error resulting from
interpolating across space at a given time.

The first of five interpolations was made temporally
for gaps of one day. The second interpolation was made
spatially with the constraint that a value can only be
estimated if there are a minimum of three out of the
four (above, below, left, and right) ‘‘good’’ values pre-
sent. This temporal–spatial sequence was repeated once,
decreasing the tolerance for the number of ‘‘good’’ spa-
tial data values to a minimum of two. Finally, temporal
gaps of less than 60 days were filled by linear inter-
polation. The remaining missing values—gaps of 60 or
more days, and the points at the head and tail of the
dataset where temporal interpolation is impossible—are
filled by using the value in the other grid (e.g., if the
daytime value is missing it will be filled by using the
nighttime value). In those places where there are neither
a daytime value, nor a nighttime value, spatial inter-
polation was used after forming a daily average. The
position of all interpolated values were marked with a
numeric flag that describes the level of confidence in
that estimated value.

b. Isolating the afternoon satellite ECT drift bias

The isolation of the actual pattern and the magnitude
of the satellite biases was achieved by REOF analysis

of the interpolated OLR dataset. EOF analysis, also
called principal components or common factor analysis,
is a common technique used to examine the interrela-
tionships between data. This technique decomposes the
data into a series of modes, which are composed of an
eigenvector (also known as loading; in this case a time
series) and an amplitude (in this case a spatial map).
The projection of the data onto the eigenvector produces
the amplitude of that mode. The unrotated EOF analysis,
by definition, acts to maximize for each mode, the var-
iance explained over the entire analysis domain. The
first mode returned, therefore, contains the maximum
variance that a single mode can account for, and the
second mode, contains the highest variance that a single
mode can account for and still be orthogonal to the first
mode, and so on. This makes the resulting EOF modes
very sensitive to domain size and spatial resolution.
Rotation of the EOF modes stabilizes the EOF loading
and can facilitate their physical interpretation (Richman
1986).

Procrustes target analysis (PTA) is a rotation tech-
nique that attempts to linearly transform the EOF load-
ings into a set of loadings that are as much like a target
matrix as possible. This is done by a least-squares fit
of the EOF loading matrix to a target matrix, such that
B 5 AT 1 E; where B is the target matrix, A is a matrix
of the EOF loadings, T is the transform matrix, and E
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FIG. 4. Target vectors used in rotation of the EOF modes. (a) The target associated with the isolation of the
afternoon satellite ECT drift bias. (b) The target used for the transitions between afternoon and morning satellites.

is a matrix of the residuals (Richman and Easterling
1988). Only the statistically significant EOF modes were
included in the matrix of the EOF loadings (A). See the
appendix for details on determining the statistical sig-
nificance of EOF modes.

In order to isolate the variability associated with the
afternoon satellite ECT drift (see Fig. 1), the approach
described above was performed on the data collected
by the afternoon satellites. The data collected by the
morning satellites was masked out of the dataset by
replacing it with zero value anomalies. Therefore, the
total variance of the analyzed dataset was composed of
only the data collected by the afternoon satellites. Since
the rotation target (B) should approximate a model of
the ECT drift bias, the exact morning (between 0000
and 1159 LST) ECTs of the afternoon satellites were
used. For the periods of time when data were collected
by the morning satellites, the ECTs in the target (B)
were replaced with zero values. The first vector of the
target matrix (B) is shown in Fig. 4a. The other vectors
of the target matrix (B) were filled with small amplitude
zero-mean random data in order not to influence the
rotation.

An indication of a successful rotation would be if one
eigenvector strongly resembled the target time series
and if the spatial amplitude showed a strong land–sea
contrast similar to Chelliah and Arkin’s (1992) third

mode or Waliser and Zhou’s (1997) fourth mode. That
mode would then be selected as the satellite drift-bias
mode. Once the satellite drift-bias mode was identified,
the satellite-based artificial variance contained within
the eigenvector was modeled by a linear regression be-
tween the values of the eigenvector and the precisely
known ECTs. This relationship was used together with
the spatial pattern of amplitudes to construct and remove
an estimate of the true ECT drift bias. Note that since
the morning satellite data was masked out of this anal-
ysis, no correction was applied to that portion of the
dataset during this procedure.

c. Isolating the transitioning satellite bias

The drift-bias corrected dataset created in the above
step was analyzed for the biases resulting from the tran-
sitions between morning and afternoon satellites. A sim-
ilar REOF procedure to the one that was described in
the above section was used to determine the behavior
of this portion of the satellite-based artificial variability.
In this case, the complete OLR dataset was analyzed
(i.e., none of the data was masked out of this procedure).

The target (B) used to represent the transitions be-
tween morning and afternoon satellites for the rotation
of the EOF modes is presented in Fig. 4B. The portion
of the target (B) that is associated with data collected
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FIG. 5. Global average anomaly for the OLR dataset. The daytime series mean is 216.3 W m22 with a
standard deviation of 2.8 W m22 . The nighttime series mean is 212.4 W m22 with a standard deviation of
2.6 W m22 . Twenty-two daytime and 28 nighttime grids were removed from the series that is 9053 days
long.

by the morning satellites is represented by the exact
ECTs. The portion of the target (B) that is associated
with data collected by the afternoon satellites consists
of a small amplitude, zero-mean random data instead of
the exact ECTs. The rational for using random data is
that presumably the bias in the afternoon satellite data
was corrected for in the above procedure. Like the pre-
vious rotation, the other vectors of the target matrix (B)
were filled with small amplitude zero-mean random
data.

4. Analysis and results

In order to achieve the goal laid out in the previous
section, we must first ensure that the data is of good
quality and ready for interpolation. The NCEP–NOAA
2.58 3 2.58 gridded twice-daily OLR dataset was first
subjected to a pair of quality assurance tests. In each of
these steps the daytime series of grids were handled
separately from the nighttime series of grids. The first
test examined the temporal quality of the data by using
the area-weighted global-average anomaly. In this case,
the anomaly was formed with respect to the global-
average annual cycle. Anomalies that fell within plus
or minus five standard deviations from the long-term
mean were retained (Fig. 5). The daytime series had

standard deviation of 2.8 W m22. The nighttime series
had standard deviation of 2.6 W m22. Twenty-two day-
time and 28 nighttime grids were flagged as missing
(;0.3% of data) from the series that is 9053 days long.

To test for spatial consistency, each grid point was
subjected the spatial ‘‘buddy’’ check used by Liebmann
and Smith (1996). The buddy check compares each
point to its eight neighboring grid points and marks it
missing if it deviates too far from the surrounding
points. A total of 35 841 points (;0.04% of data) were
removed from the daytime grids and 38 408 (;0.04%
of data) from the nighttime grids. The majority of the
points removed were distributed across the equatorial
region.

a. Filling missing values

With the data of suspect quality removed, the process
of filling in the missing values by interpolation can pro-
ceed. In each of the interpolation steps, the daytime
series of grids were handled separately from the night-
time series of grids. The 9-month gap of missing data
in 1978 was excluded from the interpolation process
and remains as a discontinuity in each of the OLR series.
A total of 5.7 million grid points (;6.2% of data) and
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TABLE 2. Statistics associated with the interpolation scheme. The total number of missing points filled for the daytime (nighttime) grids
represents 6.2% (6.1%) of the entire dataset.

Interpolation step

Daytime grids

Number of
points filled

Percent of total
missing points

Nighttime grids

Number of
points filled

Percent of total
missing points

1) 1-day gaps 2 812 676 49.2% 2 818 011 50.0%
2) Spatial—3 of 4 grid points 83 356 1.5 81 343 1.4
3) 1-day gaps 3302 0.1 3 166 0.1
4) Spatial—2 of 4 grid points 236 395 4.1 174 939 3.1
5) Final linear temporal interpolation 2 440 732 42.7 2 266 558 40.2
6) Filled by using the value in the

other grid (i.e., day 5 night)
135 817 2.4 290 898 5.2

7) Spatially interpolated (i.e., points
where there are no daytime and
no nighttime values

278 K0.1 278 K0.1

Total 5 712 556 100.0% 5 635 193 100.0%

5.6 million grid points (;6.1%) were interpolated for
the daytime and nighttime, respectively.

During the first step, 2.8 million 1-day gaps in each
of the daytime and nighttime series, approximately 50%
of the missing data, were filled. This represents the high-
est percentage of filled values by any step (see Table
2). The second step, which used three or more sur-
rounding spatial points to interpolate the missing grid
point, filled approximately 1.5% of the missing values
in each of the daytime and nighttime series. The third
step, interpolated an additional 0.1% of the data by again
interpolating 1-day gaps. The fourth step, which is sim-
ilar to the second step, used two or more surrounding
spatial points to fill 4.1% of the missing daytime points
and 3.1% of the missing nighttime points. The final
linear temporal interpolation step filled the remaining
temporal gaps that are less than 60 days long. This step
filled 42.7% of the daytime and 40.2% of the nighttime
total missing values. Figure 6 shows those percentages
broken down for each gap length. It can be seen that
the majority of the data filled in this step is composed
of short gap lengths. In fact, 72% (70%) of the daytime
(nighttime) points filled in this step are associated with
gaps of five days or less. The remaining missing values
in each series (2.4%, daytime and 5.2%, nighttime miss-
ing values) are filled by using the value in the other
grid. A final spatial interpolation is used to resolve the
few remaining values (K0.1%) that have neither a day-
time value nor nighttime value. All of these values are
flagged to show their degree of uncertainty. Some dis-
cussion of the influence the above missing values might
have on the isolation of the ECT biases is given at the
end of section 4c.

b. Isolating the afternoon satellite drift bias

To remove the afternoon satellite drift bias from the
OLR dataset we must first determine which REOF mode
captures the artificial variability and to what extent that
variability is mixed with naturally occurring variability.
The analysis of the afternoon satellite drift bias begins

with the examination of each of the EOF modes to de-
termine its relationship to natural variability. While
there are 19 statistically significant (see the appendix)
modes that account for a total of 29.1% of the anomaly
variance, only the first four rotated EOF modes are
shown and discussed here.

In general, an EOF analysis decomposes the data into
a series of modes, which are composed of an eigenvector
(loading or fixed pattern) and an amplitude. These
modes are ranked with respect to the variance explained
by each such that the first mode returned (and presented)
contains the most variance, the second mode contains
the second most variance, and so on. In our REOF tech-
nique, we are looking to analyze and target the variance
in the time domain. This suggests that the EOF analysis
be done such that the eigenvectors are time series and
the amplitudes are spatial patterns. Procrustes target ro-
tation can then be used to rotate the EOF eigenvectors
in a manner that will most fully isolate the biases as-
sociated with the changing of the ECT. Due to the nature
of the targeted rotation it is not strictly necessary, nor
is it expected, that the rotated EOF modes will show
uniquely distinguishable climate patterns like those pre-
sented in previous REOF studies. Climate patterns, such
as ENSO and Madden–Julian oscillation (MJO), would
only be uniquely separable if they were orthogonal to
the target time series.

Figure 7 shows the first four REOF modes (out of
19) produced by the Procrustes target rotation analysis.
These modes are presented in order of decreasing var-
iance. It is readily apparent that the spatial amplitude
patterns of modes 1, 2, and 4 do not contain the distin-
guishable climate patterns similar to those traditionally
contained in unrotated EOF spatial patterns. However,
the spatial amplitude pattern of the third REOF mode
(Fig. 7c) does show a striking resemblance to the ‘‘sat-
ellite mode’’ described by Chelliah and Arkin (1992)
and Waliser and Zhou (1997).

The third REOF mode (Fig. 7c), which accounts for
1.8% of the anomaly variance, shows a strong land–sea
contrast with each landmass well defined by a negative
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FIG. 6. Temporal gap lengths filled during the final linear temporal interpolation (see item 5, Table 2). The sum of the columns for the
daytime (nighttime) grids is 42.7% (40.2%) of the total missing points.

(blue) amplitude. The eigenvector time series has a good
correlation (r 5 0.2; compared to r , 0.02 for the other
18 modes; N 5 1808) with the afternoon satellites ECTs
used for the target (B; see Fig. 4a). For example, during
the period from 1989 to 1995 the eigenvector values
have an upward trend from approximately 22 W m22

to 13 W m22. This corresponds to the satellite ECT
drift in the NOAA-11 series. Notice that this trend is
easily distinguishable from the trend that is associated
with ECT drift in the NOAA-9 series during 1986–89.
Using the 5 W m22 range of the NOAA-11 ECT drift
and the spatial amplitude value for the continent of Aus-
tralia, the OLR difference associated with this satellite
drift-bias mode in this region is about 10 W m22.

To estimate the artificial variability associated with
the satellite drift-bias mode, we examined the relation-
ship between the exact afternoon ECTs and the values
of the REOF mode three eigenvector. This relationship
is the thick black linear regression line shown in Fig.
8. It can be seen from the regression line that there is
a positive trend as the ECTs drift toward later afternoon
hours. The point at which the regression line crosses
zero is approximately 0245 LST suggesting that this is
the ‘‘common’’ ECT to which the afternoon satellite
data is being calibrated toward. The idea of a ‘‘com-

mon’’ ECT is discussed in a bit more detail in the next
subsection.

Figure 9 shows a reconstruction of the satellite drift-
bias mode eigenvector using the regression relation in
Fig. 8. The synthetic mode explains 0.4% of the anom-
aly variance in the area-weighted pentad OLR dataset.
This ‘‘synthetic’’ eigenvector, weighted by the spatial
amplitude, is the part of the anomaly variance that is
believed to be due only to the afternoon satellite ECT
changes. By using this synthetic eigenvector instead of
the actual values of the eigenvector, we hope to retain
any natural variability that may be superimposed on the
drift-bias in this mode. For example, the peak during
1982–83 in the eigenvector could be associated with the
ENSO event of that time. By using the regressed syn-
thetic eigenvector, the part of this mode that actually
may contribute to the 1982–83 El Niño will be retained
in the data as natural variability. The drift-bias mode
was reconstructed using the daily (as opposed to pentad)
afternoon satellite ECTs and subtracted from the daily
dataset.

c. Isolating the transitioning satellite bias
Now that the ECT biases associated with the after-

noon satellites have been removed from the daily OLR
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FIG. 8. Scatterplot of the ECT for the afternoon satellite vs the vector values of REOF mode 3 (see Fig. 7c). The
thick black line is the best fit linear regression y 5 1.23x 2 3.54. N 5 1313; correlation 5 0.44.

FIG. 9. Estimate of the true ECT drift-bias (thick line) associated with the afternoon satellites. The thick line is based on the
regression relation shown in Fig. 8.

dataset, we can address the issue of the biases caused
by the abrupt transitions from morning satellites to af-
ternoon satellites. REOF analysis is performed on the
full drift-corrected pentad global OLR anomaly dataset
previously described in section 2. The 19 statistically
significant EOF modes account for 28.4% of the total
anomaly variance.

The first four REOF modes are presented in Fig. 10.
Mode 4 (Fig. 10d) has the highest correlation (r 5 0.7)
to the target matrix, which is shown in Fig. 4b. It ac-
counts for 1.7% of the anomaly variance, and shows the
characteristic spatial pattern that has been previously
described here and in other REOF studies. The eigen-
vector time series clearly shows the abrupt transition

from the morning satellite NOAA-6 to the afternoon sat-
ellite NOAA-7 in September of 1981. It also shows the
approximately 4 W m22 elevation in the NOAA-SR se-
ries from June 1974 to March 1978. Again using the
region of Australia as an example, the approximately 4
W m22 loading in the NOAA-SR series, weighted by
the spatial amplitude value, gives an OLR bias of ap-
proximately 212 W m22. A negative bias in the OLR
values implies that the OLR collected by the morning
satellites will be a higher value once corrected, bringing
it in agreement with the values collected by the after-
noon satellites.

In order to establish the artificial variability associated
with the intermittent inclusion of the morning satellites,
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FIG. 11. Scatterplot of the ECT for morning satellites versus the vector values of REOF mode 4 (see
Fig. 10d). Thick line is the linear regression y 5 1.42x 2 8.65. N 5 423; correlation 5 0.48.

we must find the relationship between the exact ECTs
for morning satellites and the values of the REOF mode
4 eigenvector. This relationship is the linear regression
(thick black line) shown in Fig. 11. It can be seen that
this has a positive trend as the satellite ECT drifts toward
later hours, and a nonzero mean. This supports the no-
tion that the OLR dataset is being calibrated toward a
common afternoon ECT. Thus, rather than giving the
true diurnal average, the ‘‘corrected’’ form of the dataset
would approximate a dataset sampled with an afternoon
satellite at a fixed ECT (;0245 AM or PM—0245 or
1445 LST). Some notion of how this two-sample ap-
proximation of the diurnal mean differs from the true
diurnal mean can be obtained by comparing the time-
mean OLR obtained from the ERBE sensors (Barkstrom
1984) aboard the precessing ERBS and the NOAA-9
satellites. A comparison for the period February 1985–
January 1987 shows that over most of the global oceans
the ERBE OLR from NOAA-9 is biased low relative to
that from ERBS by about 1–3 W m22, while over the
nonequatorial regions of Africa, the middle east, Aus-
tralia, and southern South America, it is biased high by
about 1–3 W m22.

Figure 12 shows the reconstruction of the satellite
transition bias eigenvector. The thick line is the inter-
polated relationship from Fig. 11. The thin line is the
original REOF mode 4 eigenvector (see Fig. 10d). There
are positive values for the morning satellites and a zero
value for the afternoon satellites. The zero value is con-
sistent with the correction procedure, as presumably the
afternoon satellite bias was corrected in the previous

section, and therefore should not require additional cor-
rection. This synthetic eigenvector was used, weighted
by the spatial amplitude, to construct an estimate of the
ECT bias associated with the transitions between morn-
ing and afternoon satellites. The component of the sat-
ellite bias, which accounted for 0.9% of the anomaly
variance, was then subtracted from the dataset.

It should be noted that the introduction of uncertainty
in estimating the two bias modes due the filling tech-
nique is extremely minor due to the small percentage
of data that is missing (;6%) and the location of this
missing data. Approximately 60% of the missing data
lie outside of the 308N–308S tropical region and over
70% outside of the 208N–208S region. Yet about 94%
and 81% of the variance associated with either the tran-
sition or drift bias modes (i.e., Figs. 7 and 10) lie within
the 308N–308S and 208N–208S regions, respectively.
Thus for the 208N–208S band, where 81% of the vari-
ance in either of the bias/EOF modes is contained, only
30% of the original 6% of the missing data plays a role,
or about 2%. In addition, as indicated in Fig. 6, one-
day gaps are by far the most predominate gap length
and there is little uncertainty in filling such a short gap
length. An indirect illustration of the insensitivity of the
bias mode(s) to small amounts of what might be con-
sidered ‘‘noise’’ is given in the appendix, namely as-
sociated with the discussion of Fig. A3. This figure
shows that the bias mode extracted via EOF rotation is
very stable to the inclusion or omission of higher-order
modes. Finally, considering that about 70% of the gap
lengths are less than 10 days and the fact that the bias
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FIG. 12. Estimate of the artificial variability (thick line) captured in the fourth REOF. This variability is associated
with the ECT change due to the transition between afternoon satellites and morning satellites. The thick line is
based on the regression shown in Fig. 11. The thin line is the actual eigenvector time series from the fourth REOF
mode (see Fig. 10d).

modes are very low-frequency modes, in conjunction
with the rest of the discussion above, indicates the trivial
influence the method of data filling has on the estimate
of the biases.

5. Summary and discussion

The goal of this study was to derive a method for
estimating the ECT biases in the daily, global NOAA
OLR operational dataset. The methods shown here were
developed to be more exacting than those of previous
studies like Gadgil et al. (1992) and Waliser and Zhou
(1997). The dataset used for this project was the 2.58-
gridded, twice-daily OLR dataset produced by NCEP–
NOAA with all missing values filled by interpolation.
The interpolation consisted of using a modified version
of the temporal–spatial interpolation method introduced
by Liebmann and Smith (1996). Approximately 6% of
the twice-daily OLR data were interpolated before form-
ing the daily averages. These daily averages were used
to make the pentad anomalies for the rotated EOF
(REOF) analysis. Procrustes targeted EOF rotation anal-
ysis was performed on the global OLR dataset to isolate
the two major ECT biases—afternoon satellite orbital
drift and abrupt transitions between morning and after-
noon satellites. Results from the analysis show that
changes in ECTs can cause large regional biases over
both land and ocean (e.g., Vonder Haar and Suomi
1971).

The afternoon satellite ECT drift bias is isolated by
the third targeted REOF mode of the afternoon satellite
only dataset (see section 2 for details) and accounts for
0.4% of the pentad anomaly (about the annual cycle)
variance. The spatial amplitude (Fig. 7c) shows sharp
land–sea contrasts, which is consistent with the REOF
modes found in earlier ECT bias studies. The eigen-
vector time series captures a slowly varying trend that
appears to be directly related to the orbital drift of af-
ternoon satellites. For example, during the period of

December 1988–September 1994, the eigenvector time
series increases as the NOAA-11 satellite drifts from a
0145 LST crossing time to a 0500 LST crossing time.
This ECT drift introduced a time-dependent bias of ap-
proximately 10.5 W m22 in the OLR values over most
tropical landmasses.

A second targeted REOF analysis was then performed
on the ECT drift-corrected pentad OLR anomaly dataset
(i.e., the dataset after the above estimate of the drift
mode was subtracted; see section 2) to isolate the ECT
bias associated with the transitions between afternoon
satellites and morning satellites. The transition bias was
captured by the fourth targeted REOF mode, which ac-
counted for 0.9% of the pentad anomaly variance. Like
the drift-bias mode, the spatial amplitude (Fig. 10d)
shows distinct land–sea contrasts in the tropical regions.
Taken together with the eigenvector time series, this
transition-bias mode shows that the OLR values over
tropical landmasses for the NOAA-SR satellite series
are biased by approximately 12 W m22 lower than those
collected by the afternoon satellites.

For each component of the bias estimate (i.e., drift
and transition), a synthetic version of the eigenmode,
rather than the exact values, was used to remove the
bias-driven variability from the OLR dataset. This was
done to try to ensure that only the variability associated
with the ECT biases is removed. The synthetic eigen-
modes were made up of the spatial amplitude pattern
of the satellite bias mode and a synthetic eigenvector
time series. The synthetic eigenvector time series was
formed from the linear regression between the actual
values of the bias-mode eigenvector and the exact ECTs
for the satellites. This allows the natural variability,
which may have a nonzero projection onto the satellite
bias mode, to remain in the OLR dataset after the sat-
ellite bias is subtracted. It should be noted that each day
of the OLR dataset is corrected for only one type of
bias. The afternoon drift-bias mode is used to correct
the portion of the data collected by afternoon satellites,
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and the transition-bias mode is used to correct the data
collected by the morning satellites.

To test the sensitivity of our bias estimate to the linear
assumption used in the above-mentioned regression
(i.e., Fig. 8 and 11), we compared the biases to those
obtained when a second-order regression was used for
each bias (transition and drift). For each regression case,
the three-dimensional bias structure (time, latitude, lon-
gitude) was produced by adding the transition and drift
biases together. We computed the correlation and root-
mean-square (rms) difference between the two bias es-
timates. The globally averaged rms and correlation val-
ues between the two bias estimates were 0.19 W m2 and
0.97, respectively. The rms outside the Tropics was ex-
ceptionally small (;0). This resulted in lower correla-
tions in the extratropics because the correlation was es-
sentially between noise. If only the 308N–308S region
was considered, then the rms was about 0.33 W m22

and the correlation was about 0.98. Thus, the bias es-
timate is fairly insensitive to the linear assumption used
to derive the relation between ECTs and bias-mode ei-
genvector values.

The improvements associated with this ECT bias-es-
timation procedure, over previous methods, are con-
tained in the separation of the two major ECT biases—
satellite orbital drift and abrupt transitions between af-
ternoon and morning satellites—and the use of the Pro-
crustes targeted REOF analysis technique. Applied to-
gether, these techniques provided a way to attempt to
establish a ‘‘common ECT’’ to which the dataset would
be corrected toward (i.e., the afternoon ECT; 1445 LST).
Further, it allows for the potential application of this
procedure to any future OLR data, provided that is col-
lected by satellites with ECT similar to those analyzed
in this study.

The two REOF bias modes produced in this study are
nearly orthogonal to each other, having less than 3% of
their variance in common (r 5 0.17). This near or-
thogonality between them suggests that the use of this
two-mode method can more adequately depict the in-
dividual nature of each of the two ECT biases than a
single REOF mode. By comparing the reconstructed
biases (the dot product of the eigenvector and the am-
plitude) produced from the single satellite mode in the
Waliser and Zhou (1997) study (see their Fig. 3d) to the
pair of modes found here (Figs. 7c and 10d) we can
make a quantitative assessment of their shared charac-
teristics. We find that the Waliser and Zhou bias shares
approximately 17% of the variance in the bias mode
that was found in this study (for the tropical region of
308N–308S). The afternoon-drift mode can account for
approximately 10% of this shared variance with the sat-
ellite transition-bias mode accounting for the remainder.

To help understand some of the limitations of the above
technique as well as the inherent difficulties associated
with the ECT bias problem, Fig. 13 shows a tropically
averaged (308N–308S) subset of the monthly OLR anom-

alies for the original NCEP–NOAA dataset (black line),
the ECT bias-corrected OLR dataset produced in this
study (dashed line), and the ECT bias-corrected OLR
dataset produced in the Waliser and Zhou (1997) study
(gray line). While some of the variation depicted by these
curves is expected to result from natural variability, there
are several periods that display what is likely to be ar-
tificial variability, especially when one considers the sat-
ellite transitions/drifts displayed at the bottom of the fig-
ure. The sources of this artificial variability could arise
from aspects of the ECT bias that were not removed,
sensor changes, narrowband-to-broadband model/diurnal
dependencies (e.g., Minnis et al. 1991; Ellingson et al.
1989; 1994), and possibly sensor/calibration drift. In dis-
cussing these sources of artificial variability, and the pe-
riods of the record they might be influencing, it is useful
to consider the morning satellite (e.g., SR, NOAA-6, -10,
-12) and afternoon satellite periods (e.g., TIROS-N,
NOAA-7, -9, -11, -14) separately.

With respect to the variations in the tropical average
OLR for the morning satellites, there are fairly sharp
transitions occurring between morning and afternoon
satellites (e.g., before and after NOAA-6, after NOAA-
12). On one hand, this raises a question as to how well
the ECT transition bias has been estimated, especially
as it relates to the tropical average. On the other hand,
these transitions appear to demonstrate that the OLR
record likely contains some sensor and/or intersatellite
calibration biases as well. For example, the sampling
time periods of all the morning satellites are within
about 1 h of each other (Table 1, Figure 1). This suggests
that the representation of the tropical mean OLR from
these morning satellites should have similar ECT biases
relative to that sampled by the afternoon satellites, at
least with respect to their sign. However, the data from
the SR series is biased high relative to the mean, while
that from the morning NOAA series is biased low rel-
ative to the mean. This difference cannot be attributed
to ECT based on the similarity of the sampling times
but is likely to be attributed to the sensor change and/
or intersatellite calibration, which could include nar-
rowband-to-broadband model dependencies (Gruber
and Kruger 1984; Gruber et al. 1994). Adding to the
difficulty of identifying the source(s) of these variations
is the climate change/shift that occurred in tropical SSTs
and convection around the late 1970s (e.g., Trenberth
1990; Graham 1994; Morrissey and Graham 1996). For
our estimate of the ECT transition bias, the rotation
target (see Fig. 4b) was constructed with the assumption
that the nature of the bias would present itself in a
common manner (e.g., similar in amplitude and sign)
for crossing times that are similar to each other. How-
ever, due to the presence of these other forms of vari-
ability associated with the morning satellites and their
periods of operation, it is likely that our estimate of the
transition bias includes ECT-related bias as well as some
aspects of variability that may be associated with sensor



2600 VOLUME 14J O U R N A L O F C L I M A T E

FIG. 13. Tropical-subset monthly averaged OLR anomalies produced in this study shown with
the Waliser and Zhou (1997) monthly tropical OLR anomalies for comparison. The satellite
ECTs are shown at the bottom for reference only. For the exact crossing times see Fig. 1.

changes, intersatellite calibration and/or natural climate
variability.

With respect to the variations in the tropical average
OLR (i.e., Fig. 13) for the afternoon satellites, one fea-
ture that stands out is the decreasing trend during the
early 1990s. This feature appears to occur in conjunction
with the ECT drift of NOAA-11 and again raises a ques-
tion of how well the ECT drift bias has been estimated,
especially in terms of its influence on the tropical av-
erage. Note this downward trend is not likely to be
related to the lengthy but modest El Niño that occurred
during this period (Trenberth and Hoar 1996) since the
tropical average OLR typically increases during an El
Niño (e.g., Chou 1994; Zhang et al. 1996). As with the
transition bias, there are inconsistencies in the manner
the drift appears to be projecting itself onto the tropical
mean. For example, the drifts associated with NOAA-7,
-9, and -14 do not appear to exhibit the same type of
downward trend. Similar inconsistencies are seen in the
global averages shown in Fig. 5. This raises the question
of what might be responsible for such a dramatic trend
in the tropical average during this period. One possi-
bility might be related to the fact that the afternoon
sampling time associated with NOAA-11 drifts later into
the afternoon (by about an hour) than the sampling time
for the other three afternoon satellites. Given that there
is only this one satellite and period to base our estimate
of the ECT drift bias for this sampling time upon (i.e.,

slope in Fig. 8), we may be underestimating the bias
versus drift relationship, especially if this period is also
being influenced by natural variability (e.g., El Niño).
Further, if there are nonlinear effects in the way the drift
bias influences the data this aspect would not be well
captured by our linear techniques (i.e., EOFs in con-
junction with Figs. 8 and 11). Some evidence for such
a nonlinearity, at least at one tropical location, is given
by the estimate of the diurnal cycle over the Sahara and
its polar orbiting sampling bias presented in Waliser and
Zhou (1997; their Fig. 5).

An additional possibility for the downward trend dur-
ing the 1990s is a sensor/calibration drift. Along with
the lack of a similarly observed feature during the
NOAA-7 and -9 periods, additional evidence for this
possibility is given by the time series of OLR anomalies
averaged over high latitudes (e.g., 458–808; not shown).
These plots show evidence of a downward trend over
both high-latitude regions during the period associated
with the NOAA-11 but not NOAA-7 or NOAA-9. Note
that the ECT bias should be greatly reduced over high-
latitude regions due to overlapping coverage of subse-
quent passes, and especially over the southern latitudes
due to the prevalence of ocean versus land (e.g., Figs.
7c, 10d; Harrison et al. 1988). Even with such leading
information, the likelihood of a sensor/calibration-re-
lated bias is still mostly a matter of speculation as there
is very little tangible information by which to assess
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this as a possible source of bias. As with the morning
satellites, there is also some evidence of a bias related
to a sensor change in the afternoon satellites that influ-
ences the tropical average. Specifically, the sampling
time of TIROS-N is similar to the initial sampling times
of all the other NOAA-series afternoon satellites. How-
ever, its tropical average is biased high relative to these
other satellites/periods. To determine if this difference
was associated with natural variability or a sensor
change, it might be possible to analyze other datasets
that are not affected by the same ECT sampling bias.

While the original intention was to produce a ECT
bias correction that was considered robust enough to
implement operationally, the remaining uncertainties re-
garding the method and associated dataset described
above suggest that further refinements be made before
proceeding to that stage. Moreover, based on the anal-
ysis undertaken in this study, it is suggested that future
efforts to estimate the ECT bias in the NOAA OLR
dataset employ either radiation models that specify ob-
served cloud amounts (e.g., Zhang et al. 1995) or utilize
the ERBE diurnal cycle model (Brooks et al. 1986) or
similar constructs (e.g., Young et al. 1998). The former
was explored in the early stages of this project but the
model OLR fields analyzed did not match the observed
fields sufficiently well at the time to continue with that
avenue of analysis. Presently, the latter alternative ap-
pears to hold promise and is currently under exploration
(Xie et al. 2000). Until further progress is made re-
garding the diagnosis and understanding of the artificial
components of the variability in the NOAA OLR da-
taset, we recommend that considerable caution be ex-
ercised when trying to apply this dataset to studies of
low-frequency climate variability, and in particular to
questions concerning anthropogenic climate change.
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APPENDIX

Determination of Statistically Significant Modes to
Rotate

In order to determine which EOF modes to use in the
rotation, we used a modified form of the Preisendorfer
N-rule significance test (Preisendorfer et al. 1981). An

example of the previous use of the N-rule test on EOFs
can be found in Waliser and Zhou (1997). In the N-rule
test, a series of EOF analyses are performed on random-
number datasets that have the same dimensions in time
(N points) and space (P points) as the analyzed OLR
dataset. The results of those random-data EOF analyses
are grouped together according to mode number and
sorted to find the highest eigenvalue percentages (i.e.,
the percent of total anomaly variance described by the
eigenvalue) for each mode number. When this procedure
is performed on 100 different random datasets, the high-
est eigenvalue percentage for each mode denotes a 99%
significance level, the second highest eigenvalue per-
centage for each mode denotes a 98% significance level,
and so on. The idea being that if a mode returned from
the EOF analysis of OLR data has a percentage that
exceeds the highest percentage for that mode in the
analysis of the 100 random-number datasets, then it can
be called significantly different, at the 99% confidence
level, from random noise. In this study, an F test (Hoel
1984) was added to the N-rule significance test to find
the minimum number of significant modes to include
in the rotation. This is done by comparing the ratio of
the variance explained by rotating all of the significant
modes to the variance explained by rotating some num-
ber less that all of the significant modes until that ratio
is no longer statistically significant.

The above procedure was performed for the area-
weighted pentad OLR anomaly dataset. However, to
make an assessment that was as conservative as pos-
sible, we attempted to estimate the number of indepen-
dent samples in the OLR dataset with respect to time
and space (N and P, respectively). The number of pen-
tads (N) in the OLR dataset is 1735 and the number of
spatial points (P) equals 10 512 (73 3 144 grid points).
The autocorrelation computed in the zonal direction
(constant latitude), averaged over time and longitude,
suggested a decorrelation scale (1/e) as large as 168
(;6.5 points). Similarly, the autocorrelation computed
in the meridional direction (constant longitude) at each
zonal point, averaged over time and latitude, suggests
a decorrelation scale as large as 7.58 (;3 points). To-
gether, these two factors reduce P from 10 512 to 506
(23 3 22). The autocorrelation computed in the tem-
poral direction at each spatial point, averaged over the
meridional direction, suggests that the decorrelation
scale is just under two pentads. This reduces the effec-
tive number of independent samples in time to N 5 964.

Based on the above N and P values for the OLR
dataset, the N-rule significance test was performed using
50 ‘‘random-number’’ datasets. The random-number da-
tasets were generated by selecting data points from the
pentad OLR anomaly dataset and shuffling, with respect
to time and space, before each EOF analysis. This al-
lowed us to create a ‘‘random-number’’ dataset that was
more representative of the characteristics of our data
than a true random-number dataset would. Figure A1
shows the results of the N-rule test. The solid thick line
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FIG. A1. Eigenvalues, in terms of percent of anomaly variance explained, for the pentad OLR dataset. The thick line indicates the
98% confidence level as determined by the Preisendorfer N-rule test.

in the plot shows the 98% confidence limits. The thin
line with squares shows the eigenvalue percentages from
the OLR EOF decomposition. For the OLR dataset, the
first 46 modes are judged to be significantly different
from random noise at the 98% confidence limit and thus
were the modes considered for inclusion in the F-test
procedure. The total amount of pentad anomaly variance
explained by the first 46 modes was 44%.

The F test is useful in testing the equality of two
variances, which is a way to test that the two samples
have been drawn from the same parent population. It
has previously been established, by the N-rule test, that
the first 46 EOF modes are significantly different from
randomized data. Using the variance explained by this
number of modes (46), we compared the variance ex-
plained by a lesser number of modes (46 2 n), varying
n until the ratio exceeded the critical F value. Above
this critical value of n, the two samples can no longer
be established as being drawn from the same parent
population at a 95% confidence level. To make a liberal
estimate of the number of modes to include in the ro-
tation, we selected two more than the critical number.
The F ratios are shown in Fig. A2. The thin line rep-
resents the critical F values for the 95% significance
level. The line with squares is the ratio of the variance
explained by 46 modes to the variance explained by (46

2 n) modes. It can be seen that 17 is the number of
modes at which the F ratio exceeds the critical F value,
therefore, 19 (2 1 17) is the minimum number of modes
included in the rotation without degrading the variance
of the retained data and thus, presumably, the ECT bias
signal. The first 19 EOF modes account for 28% of the
anomaly variance.

To validate the F-test approach described above, we
performed a ‘‘rotation sensitivity’’ test on the results
from an EOF analysis of a pentad OLR anomaly dataset.
The sensitivity test was devised to determine how the
integrity of the ECT bias mode changed by rotating a
lesser number of modes (46 2 n) compared to rotating
all 46 significant modes. This sensitivity test examined
the correlation between the satellite bias mode found in
each of the (46 2 n) rotations to the satellite bias mode
found using the full 46 modes. Figure A3 shows the
results of this sensitivity test. It can be seen that the
correlation remains fairly constant for rotations for 25–
45 modes. This suggests that although the additional
variance contained in the higher number modes is sig-
nificantly different from randomized data, it is not re-
lated to the ECT bias. The correlation for the rotation
of 19 modes is 0.95 indicating that the integrity of the
ECT bias is only minimally enhanced by the inclusion
of the addition variance.
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FIG. A2. Results from the F test used to find the minimum number of significant modes to include in the rotation. The thick line
represents the 95% significance level.

FIG. A3. Sensitivity test to confirm that the ECT bias is adequately described by the rotation of 19 EOF
modes.
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